Maths Mastery

At the depth of the mastery approach to the teaching of mathematics is the belief that **all children have the potential to succeed.** They should have access to the same curriculum content and, rather than being extended with new learning, they should **deepen their conceptual understanding by tackling challenging and varied problems.** Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in EYFS through to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 Primary National Curriculum is explicit in articulating the importance of children using the correct mathematical language as part of their learning. Indeed, in certain year groups, the non-statutory guidance highlights the requirements for children to extend their language around certain concepts. It is therefore essential that teaching the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. The agreed list of terminology is above each mathematical operation in this policy.

The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification, argument or proof.

2014 Maths Programme of Study

How to use the policy

This policy is a guide for all teaching and support staff. It is purposefully set out as a progression of mathematical skills and not into year group phases to encourage a flexible approach to teaching and learning. It is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move onto the next concept. However, the focus always **must remain on breadth and depth rather than accelerating through concepts.** Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems.

For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The main concrete materials to be used within all year groups are Base 10, PV counters and Cuisenaire rods. The principle of the concrete-pictorial-abstract (CPA) approach (make it, draw, write it) is for children to have a true understanding by mastering all these three phrases within each mathematical concept.

Calculation Policy: Guidance Addition and Subtraction

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two	Combining two	Adding 3 single	Column method	Column method –	Column method –	Column method
	parts to make a	parts to make a	digit numbers	 regrouping 	regrouping (up to 4	regrouping	with regrouping
	whole: part whole	whole: part			digits)		
	model	whole model	Use of base 10	Using PV		PV with decimals	Abstract methods
			to combine two	counters (up to			
	Start with the	Start with the	numbers	3 digits)			
	bigger number	larger number					
	and count on	and count on	Use of a blank				
			number line				
	Regrouping to	Regrouping to					
	make 5 using the	make 10 using					
	five frame	the ten frame					
Subtraction	Counting back	Counting back	-Counting back	Column method	Column method	Column method	Column method
		Taking away	-Find the	with regrouping	with regrouping	with regrouping	with regrouping
	Taking away ones	ones	difference		(up to 4-digits)		
		Find the	-Part whole	(up to 3 digits		Abstract for whole	Abstract methods
	Part whole model	difference	model	using PV		numbers	
		Part whole	-Blank number	counters			
	Making 5 using	model	line			PV with decimals	
	the five frame	Make 10 using	-Make 10				
		the 10 frame	-Use of base 10				

Calculation policy - Addition

Key Language: sum, total, parts and wholes, plus, add, addition, addend, total, altogether, score, more, is equal to, is the same as, exchange, inverse, make, increase, commutative

24 + 15=

Add together the ones first then add the tens. Use the Base 10 first before moving onto place value counters.

<u>10s 1s</u> 1111 . 4 9

After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.

345

23

368

500 + 50 + 2

100 10

HTO + TO, HTO + HTO etc. Regrouping When there are 10 ones in the 1s column, we exchange for 1 ten. When there are 10 tens in the 10s column, we exchange for 1 hundred.

Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.

As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

As children move on to decimals, money and decimal place value counters can be used to support learning.

Calculation policy - Subtraction

Key Language: take away, less than, the difference, subtract, subtrahend, minus, fewer, decrease, exchange, answer, inverse, count on, count back, reduction

Concrete	Pictorial	Abstract
Physically taking away and removing object from a whole (for example using counting objects, ten frames, cubes and other items such as beanbags). 4	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	$ \begin{array}{c} 18 - 3 = 15 \\ 8 - 2 = 6 \\ $
Counting back (using number lines) children start with 6 and count back to 2. 1 2 3 4 5 6 7 8 9 10	Children to represent what they see pictorially	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Formal column method using place value counters.

Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.

Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.

Children must understand what has happened when they have crossed out digits.

Solve the missing digits

Calculation Policy: Multiplication and Division Guidance

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Multiplication	ELG: solve problems, including doubling	Doubling	Arrays – showing commutative multiplication	Arrays 2d x 1d	Column multiplication – introduced with place value counters (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods
Division	ELG: solve problems, including halving and sharing	Sharing objects into groups	Division as grouping Division within arrays – linking to multiplication Repeated subtraction	Division with a remainder 2d divided by 1 d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit – concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit) Children should exchange into the tenths and hundredths column too.

Calculation policy - Multiplication

Key Language: double, multiples, multiply, multiplied by, times, lots of, groups of, product, repeated addition, array, row, column

	2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	
Repeated addition – use different objects to add equal groups	88 88 88	There are 3 groups of 4 which is equal to 12 3 x 4 = 12 (3 groups of 4) 4 + 4 + 4 = 12 Write addition contences to describe
	$ \begin{array}{c} 8 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	objects and pictures.
	5 5 5 5 5 5 5 5 5 5 5 5 5 5	

Number lines to show repeated groups-	Represent this pictorially e.g. alongside a number line	Abstract number line showing three jumps of four. $3 \times 4 = 12$
Commutative – create arrays using counters/ cubes to show multiplication sentences.	Number line showing 2x4 and 4x2 and bar model $ \begin{array}{c} $	Use an array to write multiplication sentences and reinforce repeated addition $2 \times 5 = 10$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 5 + 5 = 10 0 = 0 = 0 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 $5 \times 3 = 15$ $3 \times 5 = 15$

Calculation policy - Division

Key Language: halve, half, share, group, repeated subtraction, divide, divided by, divisor, dividend, quotient, into lots of, divisible, remainder, factor

Concrete	Pictorial	Abstract
Sharing using a range of objects	Children use pictures or shapes to share quantities.	Share 9 buns between 3 people.
The divisor will give you the number of groups.	\$\$ \$ \$ \$ \$ \$ \$	9 ÷ 3 = 3
	** **	3 3
	<i></i>	6 ÷ 2 = 3
	8 ÷ 2 = 4 Drawing objects that are shared	 Children should also be encouraged to use their 2 times tables facts. Share 20 cubes: can make equal groups of 2. can make equal groups of 5. can make equal groups of 10. What would happen if there were 21 cubes? Share 8 cakes equally between 2 plates. 8 cakes shared equally between 2 is 4.

